LECTURE 34 AREA AND ESTIMATING WITH FINITE SUMS

In the examples, we see that there is always something about “varing” quantities — it is captured by a
function f (x). Here, we consider a concrete example about [ f (z) dz.

Example. Find the area below the graph of the function f (x) = v/4 — 2 on [0, 2] by approximating with

two vertical bars.

Solution. We know the exact solution here, i.e. the area of a sector with 90 degrees and a radius of 2,

m(2)% = 7~ 3.14159.
First, we approximate the area by two vertical bars with an identical width of 1, with height decided by

the function value on the left endpoint. In other words, the first vertical bar takes height f (0) = 2 while the

second takes f (1) = v/3. Note that the common width Az here is simply the length of the interval divided

by the number of bars 2. We find that the sum of the area of the two bars is

Area = Az x (f(0)+ f (1)) =1x (f(0)+ f (1)) = 2+ V3 ~ 3.73205.

Hmmm. Gross overestimate. How about we now go with four bars with identical width of %? We find
1 1
Area = Az % (f 0)+ f (§> +f()+f <g>) =3 (2+ V375 4+ V3 + \/1.75) ~ 3.49571.
Getting better. Let’s be finer with eight bars with identical width of ;11.
1 1 3 5 3 7
Area = Az x (f(0)+f<1> +f(§> +f<z> +f(1)+f(z_1> +f<§> +f <Z_L>>

= & % (stuf )
~ 3.33982.

This is getting much closer than what we started with, relatively speaking (consider the relative error here).

Remark. However, in reality, we don’t know the true solution. We are merely refining the partition and
getting smaller and smaller numbers. But is this number guaranteed to become static after a large number
of refinement? Would it be nice if we can provide a lower bound for the area under the curve, so that we
know with the decreasing approximating sum, we won’t hit negative infinity. This lower bound can be found
by the following procedure, only a slight modification to the above:

Note that the left endpoint rule applied to the above problem is always an overestimate, that is, each

vertical bar covers the actual area under the curve on its designated subinterval. We call this an upper
sum as it definitely provides an upper bound for the area. We now proceed to provide a lower sum by

underestimating the area, with, say, 4 subintervals, which give us points =z = 0

113

5, 1,5,2. We now pick

vertical bars that hide under the curve. For example, for this curve, we choose the right endpoints,

Area = Az x (f <%>+f(1)+f<g>+f(2)) :%x (\/ﬁ+\/§+\/ﬁ+o) — 2.49571.

The overall idea here is to divide and conquer. We here outline the left endpoint rule.

(1) First, choose n, a number of subintervals on the given interval [a, b].
(2) Compute width of each subinterval, Az = b;—“

(3) Label the equidistance points formed by the subintervals, i.e., g = a, z16+Ax, 29 = a+2Ax,. .., xp_1 =
a+ (n—1)Axz,z, = b. This set of point is called a partition of [a, b].
(4) Each bar covers the subinterval [z, zg41] for K =0,...,n — 1.

(5) Each bar has a height of f (z)) (note zj is the left endpoint of the subinterval [zy, Zgy1].)
(6) Total area is

Az (f(zo) + f (1) + f @)+ + [ (1) + [ (20)) -

1
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This method can be slightly modified at step 5 so that the bar takes height f (xzx1) instead. This is called

TE+Th41
2

the right endpoint rule. If one uses the half way point f ( , this is called the midpoint rule.

The takeaways from the approximation procedure are the following:

(1) There are three basic approximations: the left endpoint rule, the right endpoint rule, and
the midpoint rule.

(2) To see whether the left endpoint or right endpoint rule gives an upper sum or lower sum
depends on the following characteristics of the function
(a) Increasing/decreasing
(b) Concavity

(3) Midpoint rule gives a sum in-between (not necessarily exactly half way between the other two).

Example. Estimate the total distance travelled by a projectile. The velocity function of a projectile fired
straight into the air is v (¢) = 160 — 9.8¢ with unit in meters per second. Use the summation technique just
described to estimate how far the projectile rises during the first 3 sec. How close do the sums come to the
exact value of 435.9 m?

Solution. Note that distance travelled and displacement are two different things. If the object is always

travelling in one direction, that is, has one sign always, then these two notions have the same value. We
160

note that the velocity changes sign at t = g ~ 16.33 which is much beyond 3 seconds. Therefore, in this
particular problem, total distance travelled is equal to total displacement.
Total Displacement = At (v (to) + v (t1) + -+ v (tn))

We first consider subintervals of length At = 1 second, chopping the domain [0, 3] into [0,1],[1,2] and
[2,3]. Then, we estimate the total displacement travelled by

(1) Left endpoint rule:

At-(v(0)+v(1)+v(2)=1-[(160—-9.8-0)+ (160 — 9.8 - 1) + (160 — 9.8 - 2)] = 450.6.
(2) Right endpoint rule:

At-(v(1)+v(2)+v(3))=1-[(160—-9.8-1) + (160 — 9.8 - 2) + (160 — 9.8 - 3)] = 421.2.

Remark. Note that our function is a monotone decreasing line. Therefore, left endpoint rule always
overestimates, while right endpoint rule always underestimates. This means, the true answer must
lie between them.

(3) Midpoint rule:

At (v(0.5)+v(1.5) +v(25))=1-[(160 —9.8-0.5) + (160 — 9.8 - 1.5) 4+ (160 — 9.8 - 2.5)] = 435.9.
However, since this is a line, we know its exact area from [0, 3]. Indeed, it is a trapezoid with upper and
lower base 160 and 160 — 9.8 x 3, and a height of 3. So, the area is

1
Ezact = B (160 + 160 — 9.8 x 3) x 3 =435.9.

Is it surprising that this coincided with the midpoint rule approximation? It may be at first, since the
midpoint rule always gives a bar that overestimate on one side but underestimate on the other. However,
the amount of the overestimate and underestimate is exactly equal, and hence offsets each other, only because
we are approximating a line.

Now, we distinguish between displacement and distance travelled. Displacement is [ v (¢) dt where v (¢)
is velocity. Distance travelled is the absolute displacement at every subinterval, that is,

Total Distance = At (|v (t1)] + v ()] + -+ + v (E,)]) -

Example. Average value of a function. One may think of the arithmetic average as summing all numbers
and divide by the number of items. Say,

Ave =

S|

(.’171—|—2172—|-"'—|—:En).
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The average value of a continuous function is computed in a similar fashion, though now we replace the sum
by an integral, and the “1” by - where the average is sought on the interval [a, b).

Ave = ﬁ/f(az)dx

Again, we are here required to estimate the integral [ f (z)dz.



